O(`) Shift in Hopf Bifurcations for a Class of Non-standard Numerical Schemes

نویسندگان

  • MURRAY E. ALEXANDER
  • SEYED M. MOGHADAS
چکیده

Quantitative aspects of models describing the dynamics of biological phenomena have been mostly restricted to results of numerical simulations, often by employing standard numerical methods. However, several studies have shown that these methods may fail to reproduce the actual dynamical behavior of the underlying continuous model when the integration time-step, model parameters, or initial conditions vary in their respective ranges. In this paper, a non-standard numerical scheme is constructed for a general class of positivitypreserving system of ordinary differential equations. A connection between the dynamics of the system and that of the scheme is established in terms of codimension-zero bifurcations. It is shown that when the continuous model undergoes a bifurcation with a simple eigenvalue passing through zero (pitchfork, transcritical or saddle-node bifurcation), the scheme exhibits a corresponding bifurcation at the same bifurcation parameter value. On the other hand, for a Hopf bifurcation there is in general an O(`) shift in the bifurcation parameter value for the numerical scheme, where ` is the time-step. Partial results for the bifurcations of codimension-1 and higher are also discussed. Finally, the results are detailed for two examples: predator-prey system of Gause-type and the Brusselator system representing an autocatalytic oscillating chemical reaction.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Normal forms of Hopf Singularities: Focus Values Along with some Applications in Physics

This paper aims to introduce the original ideas of normal form theory and bifurcation analysis and control of small amplitude limit cycles in a non-technical terms so that it would be comprehensible to wide ranges of Persian speaking engineers and physicists. The history of normal form goes back to more than one hundreds ago, that is to the original ideas coming from Henry Poincare. This tool p...

متن کامل

Bifurcation analysis and dynamics of a Lorenz –type dynamical system 

./files/site1/files/0Abstract1.pdfIn this paper we consider a continues Lorenz – type dynamical system. Dynamical behaviors of this system such as computing equilibrium points, different bifurcation curves and computation of normal form coefficient of each bifurcation point analytically and numerically. In particular we derived sufficient conditions for existence of Hopf and Pitchfork bifurcati...

متن کامل

Discretizing Dynamical Systems with Hopf-Hopf Bifurcations

We consider parameter-dependent, continuous-time dynamical systems under discretizations. It is shown that Hopf-Hopf bifurcations are O(h)-shifted and turned into double Neimark-Sacker points by general one-step methods of order p. Then we discuss the effect of discretization methods on the emanating Hopf curves. The numerical approximation of the critical eigenvalues is analyzed too. The resul...

متن کامل

Symmetry Breaking Hopf Bifurcations in Equations with O(2) Symmetry with Application to the Kuramoto-Sivashinsky Equation

In problems with O(2) symmetry, the Jacobian matrix at nontrivial steady state solutions with Dn symmetry always has a zero eigenvalue due to the group orbit of solutions. We consider bifurcations which occur when complex eigenvalues also cross the imaginary axis and develop a numerical method which involves the addition of a new variable, namely the velocity of solutions drifting round the gro...

متن کامل

Patterns of oscillation in a Ring of Identical Cells with Delayed Coupling

We investigate the behaviour of a neural network model consisting of three neurons with delayed self and nearest-neighbour connections. We give analytical results on the existence, stability and bifurcation of nontrivial equilibria of the system. We show the existence of codimension two bifurcation points involving both standard and D3-equivariant, Hopf and pitchfork bifurcation points. We use ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005